Admin//د.وسام محمد المدير العام Administrator
الابراج :
عدد المساهمات : 3746 تاريخ الميلاد : 13/10/1981 العمر : 43 نقاط : 6263 تاريخ التسجيل : 04/01/2008 رقم الهاتف الجوال : 0020169785672
بطاقة الشخصية تربوي:
| موضوع: Teaching Science through Inquiry تدريس العلوم من خلال التحقيق (من خلال التقصي). الثلاثاء نوفمبر 03, 2009 9:52 am | |
|
"If a single word had to be chosen to describe the goals of science educators during the 30-year period that began in the late 1950s, it would have to be INQUIRY." (DeBoer, 1991, p. 206).
In a statement of shared principles, the U.S. Department of Education and the National Science Foundation (1992) together endorsed mathematics and science curricula that "promote active learning, inquiry, problem solving, cooperative learning, and other instructional methods that motivate students." Likewise, the National Committee on Science Education Standards and Assessment (1992) has said that "school science education must reflect science as it is practiced," and that one goal of science education is "to prepare students who understand the modes of reasoning of scientific inquiry and can use them." More specifically, "students need to have many and varied opportunities for collecting, sorting and cataloging; observing, note taking and sketching; interviewing, polling, and surveying" (Rutherford & Algren, 1990). DISTINGUISHING FEATURES OF INQUIRY-ORIENTED SCIENCE INSTRUCTION
Inquiry-oriented science instruction has been characterized in a variety of ways over the years (Collins, 1986; DeBoer, 1991; Rakow, 1986) and promoted from a variety of perspectives. Some have emphasized the active nature of student involvement, associating inquiry with "hands-on" learning and experiential or activity-based instruction. Others have linked inquiry with a discovery approach or with development of process skills associated with "the scientific method." Though these various concepts are interrelated, inquiry-oriented instruction is not synonymous with any of them.
From a science perspective, inquiry-oriented instruction engages students in the investigative nature of science. As Novak suggested some time ago (1964), "Inquiry is the [set] of behaviors involved in the struggle of human beings for reasonable explanations of phenomena about which they are curious." So, inquiry involves activity and skills, but the focus is on the active search for knowledge or understanding to satisfy a curiosity.
Teachers vary considerably in how they attempt to engage students in the active search for knowledge; some advocate structured methods of guided inquiry (Igelsrud & Leonard, 1988) while others advocate providing students with few instructions (Tinnesand & Chan, 1987). Others promote the use of heuristic devices to aid skill development (Germann, 1991). A focus on inquiry always involves, though, collection and interpretation of information in response to wondering and exploring.
From a pedagogical perspective, inquiry-oriented teaching is often contrasted with more traditional expository methods and reflects the constructivist model of learning, often referred to as active learning, so strongly held among science educators today. According to constructivist models, learning is the result of ongoing changes in our mental frameworks as we attempt to make meaning out of our experiences (Osborne & Freyberg, 1985). In classrooms where students are encouraged to make meaning, they are generally involved in "developing and restructuring [their] knowledge schemes through experiences with phenomena, through exploratory talk and teacher intervention" (Driver, 1989). Indeed, research findings indicate that, "students are likely to begin to understand the natural world if they work directly with natural phenomena, using their senses to observe and using instruments to extend the power of their senses" (National Science Board, 1991, p. 27).
In its essence, then, inquiry-oriented teaching engages students in investigations to satisfy curiosities, with curiosities being satisfied when individuals have constructed mental frameworks that adequately explain their experiences. One implication is that inquiry-oriented teaching begins or at least involves stimulating curiosity or provoking wonder. There is no authentic investigation or meaningful learning if there is no inquiring mind seeking an answer, solution, explanation, or decision. THE BENEFITS OF TEACHING THROUGH INQUIRY
Though some have raised concerns about extravagant claims made for science instruction based on activities and laboratory work (Hodson, 1990), studies of inquiry-oriented teaching (Anderson et al., 1982) and inquiry-based programs of the 1960s (Mechling & Oliver, 1983; Shymansky et al., 1990) have been generally supportive of inquiry approaches. Inquiry-based programs at the middle-school grades have been found to generally enhance student performance, particularly as it relates to laboratory skills and skills of graphing and interpreting data (Mattheis & Nakayama, 1988). Evidence has also been reported that shows inquiry-related teaching effective in fostering scientific literacy and understanding of science processes (Lindberg, 1990), vocabulary knowledge and conceptual understanding (Lloyd & Contreras, 1985, 1987), critical thinking (Narode et al., 1987), positive attitudes toward science (Kyle et al., 1985; Rakow, 1986), higher achievement on tests of procedural knowledge (Glasson, 1989), and construction of logico-mathematical knowledge (Staver, 1986).
It seems particularly important that inquiry-oriented teaching may be especially valuable for many underserved and underrepresented populations. In one study, language-minority students were found to acquire scientific ways of thinking, talking, and writing through inquiry-oriented teaching (Rosebery et al., 1990). Inquiry-oriented science teaching was shown to promote development of classification skills and oral communication skills among bilingual third graders (Rodriguez & Bethel, 1983). Active explorations in science have been advocated for teaching deaf students (Chira, 1990). Finally, experiential instructional approaches using ordinary life experiences are considered to be more compatible with native American viewpoints than are text-based approaches (Taylor, 1988).
Caution must be used, however, in interpreting reported findings. There is evidence of interactions among investigative approaches to science teaching and teaching styles (Lock, 1990), and the effects of directed inquiry on student performance may vary by level of cognitive development (Germann, 1989). There seems also a possible conflict of goals when attempting to balance the needs of underachieving gifted students to develop more positive self-concepts with the desire to develop skills of inquiry and problem solving (Wolfe, 1990).
It must also be emphasized that an emphasis on inquiry-oriented teaching does not necessarily preclude the use of textbooks or other instructional materials. The Biological Sciences Curriculum Study materials are examples of those that include an inquiry orientation (Hall & McCurdy, 1990; Sarther, 1991). Other materials accommodating an inquiry approach to teaching have been identified by Haury (1992). Several elementary school textbooks have been compared (Staver & Bay, 1987) and a content analysis scheme for identifying inquiry-friendly textbooks has been described (Tamir, 1985). Duschl (1986) has described how textbooks can be used to support inquiry-oriented science teaching. As mentioned by Hooker (1879, p. ii) many years ago, "No text-book is rightly constructed that does not excite [the] spirit of inquiry."
As instructional technology advances, there will become more options for using a variety of materials to enrich inquiry-oriented teaching. Use of interactive media in inquiry-based learning is being examined (Litchfield & Mattson, 1989), and new materials are being produced and tested (Dawson, 1991). Use of computerized data-bases to facilitate development of inquiry skills has also been studied (Maor, 1991). REFERENCES
Anderson, R. D., et al. (1982, December). Science meta-analysis project: Volume I (Final report). Boulder, CO: Colorado University. ED 223 475
Chira , S. (1990, March-April). Wherein balloons teach the learning process. Perspectives in Education and Deafness, 8(4), 5-7.
Collins, A. (1986, January). A sample dialogue based on a theory of inquiry teaching (Tech. Rep. No. 367). Cambridge, MA: Bolt, Beranek, and Newman, Inc. ED 266 423
Dawson, G. (1991, February 20). Science vision: An inquiry-based videodisc science curriculum. Tallahassee, FL: Florida State University. ED 336 257
DeBoer, G. E. (1991). A history of ideas in science education. New York: Teachers College Press.
Driver, R. (1989). The construction of scientific knowledge in school classrooms. In R. Miller (Ed.). Doing science: Images of science in science education. New York: Falmer Press.
Duschl, R. A. (1986, January). Textbooks and the teaching of fluid inquiry. School Science and Mathematics, 86(1), 27-32.
Germann, P. J. (1989, March). Directed-inquiry approach to learning science process skills: Treatment effects and aptitude-treatment interactions. Journal of Research in Science Teaching, 26(3), 237-50.
Germann, P. J. (1991, April). Developing science process skills through directed inquiry. American Biology Teacher, 53(4), 243-47.
Glasson, G. E. (1989, February). The effects of hands-on and teacher demonstration laboratory methods on science achievement in relation to reasoning ability and prior knowledge. Journal of Research in Science Teaching, 26(2), 121-31.
Hall, D. A., & McCurdy, D. W. (1990, October). Journal of Research in Science Teaching, 27(7), 625-36.
Haury, D. L. (1992). Recommended curriculum guides. In Science curriculum resource handbook. Millwood, NY: Kraus International Publications.
Hodson, D. (1990, March). A critical look at practical work in school science. School Science Review, 71(256), 33-40.
Hooker, W. (1879). Natural history. New York: Harper & Brothers.
Igelsrud, D., & Leonard, W. H. (Eds.). (1988, May). Labs: What research says about biology laboratory instruction. American Biology Teacher, 50(5), 303-06.
Kyle, W. C., Jr., et al. (1985, October). What research says: Science through discovery: students love it. Science and Children, 23(2), 39-41.
Lindberg, D. H. (1990, Winter). What goes 'round comes 'round doing science. Childhood Education, 67(2), 79-81.
Litchfield, B. C., & Mattson, S. A. (1989, Fall). The interactive media science project: An inquiry-based multimedia science curriculum. Journal of Computers in Mathematics and Science Teaching, 9(1), 37-43.
Lloyd, C. V., & Contreras, N. J. (1985, December). The role of experiences in learning science vocabulary. Paper presented at the Annual Meeting of the National Reading Conference, San Diego, CA. ED 281 189
Lloyd, C. V., & Contreras, N. J. (1987, October). What research says: Science inside-out. Science and Children, 25(2), 30-31.
Lock, R. (1990, March). Open-ended, problem-solving investigations: What do we mean and how can we use them? School Science Review, 71(256), 63-72.
Maor, D. (1991, April). Development of student inquiry skills: A constructivist approach in a computerized classroom environment. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Lake Geneva, WI. ED 336 261
Mattheis, F. E., & Nakayama, G. (1988, September). Effects of a laboratory-centered inquiry program on laboratory skills, science process skills, and understanding of science knowledge in middle grades students. ED 307 148
Mechling, K. R., & Oliver, D. L. (1983, March). Activities, not textbooks: What research says about science programs. Principal, 62(4), 41-43.
Narode, R., et al. (1987). Teaching thinking skills: Science. Washington, DC: National Education Association. ED 320 755
National Committee on Science Education Standards and Assessment. (1992). National science education standards: A sampler. Washington, DC: National Research Council.
National Science Board. (1991). Science & engineering indicators-1991. Washington, DC: U.S. Government Printing Office. (NSB 91-1)
Novak, A. (1964). Scientific inquiry. Bioscience, 14, 25-28.
Osborne, M., & Freyberg, P. (1985). Learning in science: Implications of children's knowledge. Auckland, New Zealand: Heinemann.
Rakow, S. J. (1986). Teaching science as inquiry. Fastback 246. Bloomington, IN: Phi Delta Kappa Educational Foundation. ED 275 506
Rodriguez, I., & Bethel, L. J. (1983, April). An inquiry approach to science and language teaching. Journal of Research in Science Teaching, 20(4), 291-96.
Rosebery, A. S., et al. (1990, February). Making sense of science in language minority classrooms. Cambridge, MA: Bolt, Baranek, and Newman, Inc. ED 326 059
Rutherford, F. J., & Ahlgren, A. (1990). Science for all Americans. New York: Oxford University Press.
Sarther, C. M. (1991, Winter-Spring). Science curriculum and the BSCS Revisited. Teaching Education, 3(2), 101-08.
Shymansky, J. A., et al. (1990, February). A reassessment of the effects of inquiry-based science curricula of the 60's. Journal of Research in Science Teaching, 27(2), 127-44.
Staver, J. R., & Bay, M. (1987, October). Analysis of the project synthesis goal cluster orientation and inquiry emphasis of elementary science textbooks. Journal of Research in Science Teaching, 24(7), 629-43.
Staver, J. R. (1986, September). The constructivist epistemology of Jean Piaget: Its philosophical roots and relevance to science teaching and learning. Paper presented at the United States-Japan Seminar on Science Education, Honolulu, HI. ED 278 563
Tamir, P. (1985, January-March). Content analysis focusing on inquiry. Journal of Curriculum Studies, 17(1), 87-94.
Taylor, G. (1988, April 1). Hands on science. Paper presented at the Annual Conference of the Council for Exceptional Children, Washington, DC. ED 297 917
Tinnesand, M., & Chan, A. (1987, September). Step 1: Throw out the instructions. Science Teacher, 54(6), 43-45.
U.S. Department of Education, & National Science Foundation. (1992). Statement of Principles (Brochure). Washington, DC: Author. Wolfe, L. F. (1990). Teaching science to gifted underachievers: A conflict of goals. Canadian Journal of Special Education, 6(1), 88-97. on the link http://www.ericdigests.org/1993/inquiry.htm تدريس العلوم من خلال التحقيق. ERIC/CSMEE Digest. اريك / CSMEE دايجست.
واضاف "اذا كانت كلمة واحدة ليتم اختياره لوصف أهداف مدرسي العلوم خلال الفترة من 30 عاما والتي بدأت في أواخر 1950s ، فإنه لا بد من التحقيق." (DeBoer, 1991, p. 206). (DeBoer ، 1991 ، p. 206). In a statement of shared principles, the US Department of Education and the National Science Foundation (1992) together endorsed mathematics and science curricula that "promote active learning, inquiry, problem solving, cooperative learning, and other instructional methods that motivate students." في بيان من المبادئ المشتركة ، وأيدت الولايات المتحدة وزارة التربية والتعليم ، والمؤسسة الوطنية للعلوم (1992) معا مناهج الرياضيات والعلوم ان "تعزيز التعلم النشط ، والتحقيق ، وحل المشكلات ، والتعلم التعاوني ، وغيرها من أساليب التدريس التي تحفز الطلاب". Likewise, the National Committee on Science Education Standards and Assessment (1992) has said that "school science education must reflect science as it is practiced," and that one goal of science education is "to prepare students who understand the modes of reasoning of scientific inquiry and can use them." وبالمثل ، فإن اللجنة الوطنية للتربية والعلوم معايير التقييم (1992) وقال ان "مدرسة لتعليم العلوم يجب أن يعكس العلم على النحو الذي يمارس" ، وان هدف واحد لتعليم العلوم هو "لاعداد الطلاب الذين يفهمون أساليب التفكير العلمي التحقيق ، ويمكن الاستفادة منها. "More specifically, "students need to have many and varied opportunities for collecting, sorting and cataloging; observing, note taking and sketching; interviewing, polling, and surveying" (Rutherford & Algren, 1990). بشكل أكثر تحديدا ، "الطلبة بحاجة إلى فرص عديدة ومتنوعة لجمع وتصنيف وفهرسة ؛ المراقبة ، وتدوين المذكرات ، ورسم ، والمقابلات ، والاقتراع ، والمساحة" (روثرفورد & Algren ، 1990). DISTINGUISHING FEATURES OF INQUIRY-ORIENTED SCIENCE INSTRUCTION ومن السمات المميزة للتحقيق العلوم الموجهة للإرشادية
Inquiry-oriented science instruction has been characterized in a variety of ways over the years (Collins, 1986; DeBoer, 1991; Rakow, 1986) and promoted from a variety of perspectives. التحقيق العلوم الموجهة للتعليم واتسم في مجموعة متنوعة من الطرق على مدى السنوات (كولنز ، 1986 ؛ DeBoer ، 1991 ؛ Rakow ، 1986) وعززت من مجموعة متنوعة من وجهات النظر. Some have emphasized the active nature of student involvement, associating inquiry with "hands-on" learning and experiential or activity-based instruction. البعض أكد على طبيعة المشاركة النشطة من جانب الطلاب ، وربط التحقيق مع "التدريب العملي على" التعلم والتجربة أو النشاط القائم على التعليم. Others have linked inquiry with a discovery approach or with development of process skills associated with "the scientific method." البعض الآخر مرتبط بالتحقيق مع اتباع نهج اكتشاف أو مع تطوير المهارات العملية المرتبطة ب "المنهج العلمي". Though these various concepts are interrelated, inquiry-oriented instruction is not synonymous with any of them. على الرغم من هذه المفاهيم المختلفة مترابطة فيما بينها ، التحقيق ، تعليمات موجهة ليس مرادفا للأي واحد منهم. From a science perspective, inquiry-oriented instruction engages students in the investigative nature of science. من منظور العلم والتحقيق تثقيف الموجه نحو يشرك الطلاب في طبيعة التحقيق العلم. As Novak suggested some time ago (1964), "Inquiry is the [set] of behaviors involved in the struggle of human beings for reasonable explanations of phenomena about which they are curious." كما اقترح نوفاك منذ بعض الوقت (1964) ، "التحقيق هو [مجموعة] من السلوكيات يشارك في النضال من البشر لتفسيرات معقولة للظواهر عن التي هي غريبة". So, inquiry involves activity and skills, but the focus is on the active search for knowledge or understanding to satisfy a curiosity. لذلك ، التحقيق يشمل النشاط والمهارات ، ولكن التركيز ينصب على البحث النشط عن المعرفة أو الفهم لإرضاء فضول. Teachers vary considerably in how they attempt to engage students in the active search for knowledge; some advocate structured methods of guided inquiry (Igelsrud & Leonard, 1988) while others advocate providing students with few instructions (Tinnesand & Chan, 1987). المدرسين تتفاوت تفاوتا كبيرا في الكيفية التي محاولة لإشراك الطلاب في البحث النشط عن المعرفة ، وبعض أساليب الدعوة تنظيما تسترشد التحقيق (Igelsrud & ليونارد ، 1988) ، في حين أن آخرين الدعوة إلى تزويد الطلبة تعليمات قليلة (Tinnesand & تشان ، 1987). Others promote the use of heuristic devices to aid skill development (Germann, 1991). تشجيع الآخرين على استخدام وسائل ارشادي لمساعدة تنمية المهارات (غيرمان ، 1991).A focus on inquiry always involves, though, collection and interpretation of information in response to wondering and exploring. والتركيز على تحقيق ينطوي دائما ، على الرغم من جمع وتفسير المعلومات ردا على التساؤل والاستكشاف. From a pedagogical perspective, inquiry-oriented teaching is often contrasted with more traditional expository methods and reflects the constructivist model of learning, often referred to as active learning, so strongly held among science educators today. من منظور تربوي ، موجه نحو تحقيق التدريس غالبا ما يتناقض مع الأساليب التقليدية أكثر تفسيرية ويعكس النموذج البنائية للتعلم ، وكثيرا ما يشار إلى التعلم النشط ، وذلك بقوة عقدت بين مدرسي العلوم اليوم. According to constructivist models, learning is the result of ongoing changes in our mental frameworks as we attempt to make meaning out of our experiences (Osborne & Freyberg, 1985). وفقا لنماذج بنائية ، والتعلم هو نتيجة للتغيرات الجارية في أطرنا العقلية ونحن نحاول جعل هذا يعني الخروج من تجاربنا (أوسبورن & Freyberg ، 1985). In classrooms where students are encouraged to make meaning, they are generally involved in "developing and restructuring [their] knowledge schemes through experiences with phenomena, through exploratory talk and teacher intervention" (Driver, 1989). Indeed, research findings indicate that, "students are likely to begin to understand the natural world if they work directly with natural phenomena, using their senses to observe and using instruments to extend the power of their senses" (National Science Board, 1991, p. 27). في الفصول الدراسية ، حيث يتم تشجيع الطلاب على بذل المعنى ، فإنها عادة ما تكون المشاركة في "تطوير وإعادة هيكلة [من] مخططات المعرفة من خلال التجارب مع الظواهر ، من خلال الحديث استكشافية وتدخل المعلم" (سائق ، 1989). والواقع أن نتائج الأبحاث تشير إلى أن " طلاب من المرجح أن تبدأ من فهم العالم الطبيعي إذا كانوا يعملون مباشرة مع الظواهر الطبيعية ، واستخدام حواسه لمراقبة واستخدام أدوات لتوسيع قوة رشدهم "(المجلس الوطني للعلوم ، 1991 ، p. 27). In its essence, then, inquiry-oriented teaching engages students in investigations to satisfy curiosities, with curiosities being satisfied when individuals have constructed mental frameworks that adequately explain their experiences. في جوهرها ، ثم ، تحقيق التدريس الموجهة يشرك الطلاب في التحقيقات لإرضاء الفضول ، مع اقتناعها العجيبة عند الأفراد قد شيدت الأطر الذهنية التي تفسر تفسيرا وافيا تجاربهم.One implication is that inquiry-oriented teaching begins or at least involves stimulating curiosity or provoking wonder. واحد يترتب على ذلك أن التحقيق يبدأ التدريس الموجهة أو على الأقل ينطوي على تحفيز الفضول أو عجب استفزاز. There is no authentic investigation or meaningful learning if there is no inquiring mind seeking an answer, solution, explanation, or decision. ليس هناك تحقيقات حقيقية أو ذات مغزى التعلم إذا لم يكن هناك عقل تستفسر عن إجابة ، والحل ، التفسير ، أو اتخاذ قرار. THE BENEFITS OF TEACHING THROUGH INQUIRY فوائد التعليم عن طريق الطلبيات
Though some have raised concerns about extravagant claims made for science instruction based on activities and laboratory work (Hodson, 1990), studies of inquiry-oriented teaching (Anderson et al., 1982) and inquiry-based programs of the 1960s (Mechling & Oliver, 1983; Shymansky et al., 1990) have been generally supportive of inquiry approaches. على الرغم من بعض المخاوف بشأن المطالبات باهظة تقدم للتدريس العلوم على أساس الأنشطة والأعمال المخبرية (Hodson ، 1990) ، ودراسات للتحقيق التدريس الموجهة (أندرسون وآخرون ، 1982) وتحقيق البرامج المستندة من 1960s (Mechling & اوليفر ، 1983 ؛ Shymansky وآخرون ، 1990) قد تم بصفة عامة داعمة للمناهج التحقيق.Inquiry-based programs at the middle-school grades have been found to generally enhance student performance, particularly as it relates to laboratory skills and skills of graphing and interpreting data (Mattheis & Nakayama, 1988). التحقيق البرامج المستندة على الدرجات المتوسطة في المدارس انه تم العثور على تعزيز أداء الطلاب عموما ، ولا سيما من حيث صلتها المهارات المختبرية والمهارات من الرسوم البيانية وتفسير البيانات (Mattheis & ناكاياما ، 1988). Evidence has also been reported that shows inquiry-related teaching effective in fostering scientific literacy and understanding of science processes (Lindberg, 1990), vocabulary knowledge and conceptual understanding (Lloyd & Contreras, 1985, 1987), critical thinking (Narode et al., 1987), positive attitudes toward science (Kyle et al., 1985; Rakow, 1986), higher achievement on tests of procedural knowledge (Glasson, 1989), and construction of logico-mathematical knowledge (Staver, 1986). أدلة أفيد أيضا أن يظهر التحقيق التدريس ذات الصلة فعالة في تعزيز محو الأمية العلمية وفهم عمليات العلم (ليندبرغ ، 1990) ، والمعارف والمفردات ، والفهم النظري (لويد وكونتريراس ، 1985 ، 1987) ، والتفكير النقدي (Narode وآخرون ، 1987) ، والمواقف الإيجابية تجاه العلوم (كايل وآخرون ، 1985 ؛ Rakow ، 1986) ، وتحقيق أعلى في اختبارات المعرفة الإجرائية (Glasson ، 1989) ، وبناء lógico المعرفة الرياضية (Staver ، 1986). It seems particularly important that inquiry-oriented teaching may be especially valuable for many underserved and underrepresented populations. يبدو من الأهمية بمكان أن التحقيق التدريس المنحى قد تكون ذات قيمة خاصة بالنسبة لكثير من السكان المحرومة والممثلة تمثيلا ناقصا. In one study, language-minority students were found to acquire scientific ways of thinking, talking, and writing through inquiry-oriented teaching (Rosebery et al., 1990). في دراسة واحدة ، واللغة ، تم العثور على طلاب من الأقليات للحصول على الأساليب العلمية في التفكير والتحدث والكتابة من خلال التحقيق التدريس الموجهة (Rosebery وآخرون ، 1990).Inquiry-oriented science teaching was shown to promote development of classification skills and oral communication skills among bilingual third graders (Rodriguez & Bethel, 1983). التحقيق المنحى تدريس العلوم وقد تبين لتعزيز تنمية المهارات تصنيف ومهارات الاتصال الشفوي بين طلاب الصف الثالث بلغتين (رودريغيز & بيثيل ، 1983). Active explorations in science have been advocated for teaching deaf students (Chira, 1990). الاستكشافات النشطة في مجال العلوم وقد دعت لتدريس الطلاب الصم (شيرا ، 1990).Finally, experiential instructional approaches using ordinary life experiences are considered to be more compatible with native American viewpoints than are text-based approaches (Taylor, 1988). أخيرا ، التجريبية نهج تعليمي باستخدام تجارب الحياة العادية تعتبر لتكون أكثر توافقا مع وجهات النظر الأمريكية هي النص الأصلي من النهج المستندة إلى (تايلور ، 1988). Caution must be used, however, in interpreting reported findings. يجب توخي الحذر ، ومع ذلك ، ذكرت في تفسير النتائج. There is evidence of interactions among investigative approaches to science teaching and teaching styles (Lock, 1990), and the effects of directed inquiry on student performance may vary by level of cognitive development (Germann, 1989). هناك أدلة على التفاعلات بين نهج التحقيق لتعليم العلوم وأساليب التدريس (لوك ، 1990) ، والآثار المترتبة على توجيه التحقيق في أداء الطلاب قد تختلف حسب مستوى التطور المعرفي (غيرمان ، 1989). There seems also a possible conflict of goals when attempting to balance the needs of underachieving gifted students to develop more positive self-concepts with the desire to develop skills of inquiry and problem solving (Wolfe, 1990). يبدو أن هناك أيضا صراع ممكن من الأهداف عند محاولة تحقيق التوازن بين احتياجات الطلاب الموهوبين من ضعف الانجازات لتطوير الذات أكثر إيجابية مفاهيم مع الرغبة في تطوير مهارات حل المشاكل والتحقيق (وولف ، 1990). It must also be emphasized that an emphasis on inquiry-oriented teaching does not necessarily preclude the use of textbooks or other instructional materials. The Biological Sciences Curriculum Study materials are examples of those that include an inquiry orientation (Hall & McCurdy, 1990; Sarther, 1991). ايضا لا بد من التأكيد على أن التركيز على تحقيق التدريس المنحى لا يحول بالضرورة دون استخدام الكتب المدرسية أو غيرها من المواد التعليمية ، والعلوم البيولوجية المناهج الدراسية مواد هي أمثلة على تلك التي تتضمن توجها التحقيق (قاعة & مكوردي ، 1990 ؛ Sarther ، 1991). Other materials accommodating an inquiry approach to teaching have been identified by Haury (1992). مواد أخرى لاستيعاب هذا النهج لتحقيق التدريس تم تحديدها من قبل Haury (1992). Several elementary school textbooks have been compared (Staver & Bay, 1987) and a content analysis scheme for identifying inquiry-friendly textbooks has been described (Tamir, 1985). العديد من الكتب المدرسية الابتدائية وقد تم مقارنة (Staver & باي ، 1987) ، وتحليل محتوى خطة لتحديد تحقيق الكتب المدرسية ودية وقد وصفت (تامير ، 1985). Duschl (1986) has described how textbooks can be used to support inquiry-oriented science teaching. Duschl (1986) وقد وصفت الكتب المدرسية كيف يمكن أن تستخدم لدعم التحقيق المنحى تدريس العلوم. As mentioned by Hooker (1879, p. ii) many years ago, "No text-book is rightly constructed that does not excite [the] spirit of inquiry." كما ذكر هوكر (1879 ، ص ب) منذ سنوات عديدة ، "لا يوجد نص الكتاب هو بحق تشييدها والتي لا تثير [الروح] من التحقيق". As instructional technology advances, there will become more options for using a variety of materials to enrich inquiry-oriented teaching. فمع تقدم التكنولوجيا التعليمية ، وسوف يصبح هناك مزيد من الخيارات لاستخدام مجموعة متنوعة من المواد لإثراء التحقيق التدريس المنحى. Use of interactive media in inquiry-based learning is being examined (Litchfield & Mattson, 1989), and new materials are being produced and tested (Dawson, 1991). Use of computerized data-bases to facilitate development of inquiry skills has also been studied (Maor, 1991). استخدام وسائل الإعلام التفاعلية في التعلم القائم على التحقيق يجري فحص (يتشفيلد & ماتسون ، 1989) ، والمواد الجديدة ويجري انتاج واختبار (داوسون ، 1991). استخدام قواعد البيانات المحوسبة ، من أجل تيسير وتنمية المهارات التحقيق كما تم درس (ماور ، 1991). | |
|